学大教育数学培训
激发兴趣 拓展思维
咨询学大教育数学培训激发兴趣拓展思维咨询学好高中数学的方法想学好高中数学,大家可以这样学,首先肯定要先打好基础,课本上较基础的知识一定要先掌握住,其次要大量做题,把基础知识转化成解题能力,是后要总结、
课程内容 |
内容简介 |
教学目标 |
对数函数及反函数 |
对数函数的概念、图像和性质;比较两个对数的大;反函数求解的基本步骤 |
理解对数函数的来源并掌握基本的对数运算;对比指数函数与对数函数;掌握反函数的求法及理解运用反函数的性质解决对对称类问题 |
指对数方程与指对数不等式 |
指数方程和对数方程的概念;解简单的指数方程和对数方程;求指数方程和对数方程近似解的常用方法 |
指数方程和对数方程的概念;解简单的指数方程和对数方程;求指数方程和对数方程近似解的常用方法 |
任意角的三角比 |
任意角的概念;终边相同的角的意义;弧度制,并进行弧度制与角度制的互比;任意角三角比的定义;角终边的位置与三角比的符号间的关系;扇形的弧长公式与面积 |
了解任意角的概念,掌握任意角的来源;了解并掌握扇形相关内容 |
同角三角比与诱导公式 |
同角三角比之间的三种基本关系;正弦、余弦、正切的三角诱导公式;用诱导公式及同角三角比之间的关系式进行化简、计算 |
理解和掌握同角三角比的八个关系式,并能用这些关系式解决一些三角恒等变换的化简与证明问题;掌握诱导公式并能运用诱导公式进行化简、求值与恒等证明 |
两角和差的正弦、余弦、正切 |
两角和与差的正弦、余弦、正切公式,会用这些公式进行恒等变形和解决有关计算问题;在解题训练中,强化变角找思路,范围保运算的解题技能的训练 |
理解和掌握两角和差公式,并能用这些关系式解决一些三角恒等变换的化简与证明问题;对比三角式的化简、求值与恒等证明 |
圆锥曲线题,第一问求曲线方程,注意方法(定义法、待定系数法、直接求轨迹法、反求法、参数方程法等等)。一定检查下第一问算的数对不,要不如果算错了第二问做出来了也白算了。
第二问有直线与圆锥曲线相交时,记住“联立完事用联立”,第一步联立,根据韦达定理得出两根之和、两根之差、因一般都是交于两点,注意验证判别式>0,设直线时注意讨论斜率是否存在。
第二步也是较关键的就是用联立,关键是怎么用联立,即如何将题里的条件转化成你刚才联立完的x1+x2和x1x2,然后将结果代入即可,通常涉及的题型有
弦长问题(代入弦长公式)
定比分点问题(根据比例关系建立三点坐标之间的一个关系式(横坐标或纵坐标),再根据根与系数的关系建立圆锥曲线上的两点坐标的两个关系式,从这三个关系式入手解决);
点对称问题(利用两点关于直线对称的两个条件,即这两点的连线与对称轴垂直和这两点的中点在对称轴上);
定点问题(直线y=kx+b过定点即找出k与b的关系,如b=5k+7,然后将b代入到直线方程y=kx+5k+7=k(x+5)+7即可找出定点(-5,7));
定值问题(基本思想是函数思想,将要证明或要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,通过适当化简,消去变量即得定值。);
较值或范围问题(基本思想还是函数思想,将要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,利用函数求值域的方法(首先要求变量的范围即定义域—别忘了delt>0,然后运用求值域的各种方法—直接法、换元法、图像法、导数法、均值不等式法(注意验证“=”)等)求出较值(较大、较),即范围也求出来了)。
深度调研逾10年公立校教材及市售教辅资料,聚焦 学生真正需求
遵循教材科学开发程序,历时半年严苛打磨
教授专项评审团细节把控,增加更优品质
技术团队加持,优化教材使用体验
终审测试及内部培训,教材发布精准定位教学所需
统计分析教材使用信息, 定期进行教材升级迭代
把自信贯穿于解题过程的始终。
在平常学习过程中,许多同学自我感觉掌握得很好,而一做题,却往往做不出来。老师稍微点拔一下,却又马上豁然开朗。也就是说,这些题并不是做不出来。只要认真地去思考,通过分析、综合,运用各种数学思想和方法,去比比画画、写写算算,经过迂回曲折的推理或演算,就能逐渐发现题目的条件和结论之间的本质联系。自信是成功的秘诀,这并不是一句空话。面对稍为复杂一点的题,要充满自信,要知道,这些题目一般情况下不会超出自己的知识范畴,是能够用自己所学过的知识把它解出来的。要敢于去思考,并善于去思考,这是一种很重要的思维品质。具体解题时,一定要认真审题,正确区分条件和结论,并抓住两个主要环节:一是紧紧抓住这一道题和一类题之间的共性,想想这一类题的一般思路和一般解法;二是紧紧抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。选择一个或几个条件作为解题的突破口,看由这些条件能得出什么过渡结论,得出的越多越好,然后筛选出有用的结论,进一步进行推理或演算。这就是老师常给同学们讲的:“聪明的同学是一类一类地学,不聪明的同学是一道一道地学”。要知道,题海无边,只有举一反三,触类旁通,才能跳出题海,领会数学学习的奥妙。
学大教育,专注为中、生提供个性化辅导。授课模式包括1对1辅导、个性化组辅导、艺考文化课辅导等。总部坐落于北京朝阳,自2001年创立至今,历经十八年的发展,已在全国100多所城市,设有600多所学习中心。
学大教育秉承因材施教的教育理念,并在其基础上逐步延伸、发展成为“个性化智能教育。未来,学大教育将在原有业务基础上,同步发力国际教育及在线教育,实现由辅导机构向综合性教育集团的战略转型。